Ex.

10,0) — (400,0)

Red

Blue

(250,100)

(10,400)

(300,50)

Processing code:
```
size(400, 400);
background(255, 0, 0);
rectMode(CENTER);
fill(0, 0, 255);
rect(175, 75, 250, 50);
```
Ex: how many pixels are in a 400x400 image?

#pixels = 400×400 = 160,000

#bytes = 160,000 ÷ 8 = 20,000

How many bytes in a 1000x1000 image?

#pixels = 1000×1000 = 1,000,000

#bytes = 1,000,000 ÷ 8 = 125,000
Logic gates

And

\[\begin{array}{ccc}
 a & b & a \cdot b \\
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array} \]

Or

\[\begin{array}{ccc}
 a & b & a + b \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
\end{array} \]

Not

\[\begin{array}{ccc}
 a & \overline{a} \\
 0 & 1 \\
 1 & 0 \\
\end{array} \]
or gate from transistors:
not gate
Exclusive Or

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a ⊕ b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>(\overline{a})</th>
<th>(\overline{b})</th>
<th>a (\cdot) (\overline{b})</th>
<th>a (\cdot) b</th>
<th>(a (\cdot) b) + (a (\cdot) (\overline{b}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[a \oplus b = \overline{a} \cdot b + a \cdot \overline{b} \]
Define a combinational circuit.

A combinational circuit is a collection of logic gates that transforms a set of binary inputs to a set of binary outputs.
A circuit with inputs I_n, I_{n-1}, ..., I_1 and outputs O_{m-1}, O_{m-2}, ..., O_1. The outputs are connected to logical expressions, which can be converted to Boolean expressions:

- Many to one (inputs) connecting to Circuit
- 1 to 1 (Circuit) connecting to logical expressions
- Many to one (logical expressions) connecting to truth tables

The circuits are related to logical expressions and truth tables through a 1 to 1 mapping.
Ex 1-bit compare for equality

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>