Recall:

InsertionSort(A)

1. for \(j = 2 \) to \(n \)
2. \(\text{temp} = A_j \)
3. \(i = j - 1 \)
4. while \(i \geq 0 \) and \(\text{temp} < A_j \)
5. \(A_{i+1} = A_i \)
6. \(i = i - 1 \) \(\text{Basic step} \)
7. \(A_{i+1} = \text{temp} \)

Picture:

\[
\begin{array}{cccccc}
A_1 & \rightarrow & \cdots & \rightarrow & A_{j-1} & A_j & A_{j+1} & \cdots & A_n \\
\text{sorted} & & & & & & & & \\
\end{array}
\]
notation:
\[t_j = \# \text{ of executions of while loop test on } j^{th} \text{ iteration of outer for loop } (2 \leq j \leq n) \]

Let \(T(n) = \text{cost of } \text{I. S. on } A[1 \ldots n] \).

So
\[
T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j-1) + c_6 \sum_{j=2}^{n} (t_j-1) + c_7 \cdot (n-1)
\]

\[
= (c_4+c_5+c_6) \sum_{j=2}^{n} t_j + (c_1+c_2+c_3-c_5-c_6+c_7) n
\]
\[
+ (-c_2-c_3+c_5+c_6-c_7)
\]
look at: best, worst, average cases

- **Best case** : already sorted \(t_j = 1 \)

So
\[
\sum_{i=2}^{n} t_i = \sum_{i=2}^{n} 1 = n - 1
\]

after some algebra:

\[
\frac{1}{T(n)} = (c_1 + c_2 + c_5 + c_4 + c_7)n + (-c_2 - c_3 - c_4 - c_7)
\]

- **Worst case** : anti-sorted \(t_j = j \)

So
\[
\sum_{j=2}^{n} j = \sum_{j=2}^{n} j = \sum_{j=1}^{n} j - 1 = \frac{n(n+1)}{2} - 1
\]

after some algebra:

\[
\frac{1}{T(n)} = \left(\frac{1}{2} c_4 + \frac{1}{2} c_5 + \frac{1}{2} c_6 \right)n^2 + (c_1 + c_2 + c_5 + \frac{1}{2} c_4 - \frac{1}{2} c_5 - \frac{1}{2} c_6 + c_7)n + (-c_2 - c_3 - c_4 - c_7)
\]
Avg. Case: \(t_j = \frac{j}{2} \), so

\[
\sum_{j=2}^{n} t_j = \sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \sum_{j=2}^{n} j = \frac{1}{2} \left(\frac{n(n+1)}{2} - 1 \right)
\]

Some algebra:

\[
T(n) = \left(\begin{array}{c}
\end{array}\right) \frac{n^2}{2} + \left(\begin{array}{c}
\end{array}\right) n + \left(\begin{array}{c}
\end{array}\right)
\]

exercise...

Results:

<table>
<thead>
<tr>
<th></th>
<th>(T(n))</th>
<th>Asymptotic run time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>(an + b)</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Worst</td>
<td>(cn^2 + dn + e)</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>Avg.</td>
<td>(fn^3 + gn + h)</td>
<td>(\Theta(n^2))</td>
</tr>
</tbody>
</table>
Ex. Suppose we have 4 algorithms A, B, C, D solving same problem.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Asymptotic Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>B</td>
<td>$\Theta(n^4)$</td>
</tr>
<tr>
<td>C</td>
<td>$\Theta(n^4)$</td>
</tr>
<tr>
<td>D</td>
<td>$\Theta(n^2) + 100$</td>
</tr>
</tbody>
</table>

Note:
- D is superior for large, worse for small n.
- B, C are same since
 \[
 \frac{10n^2 + 2n + 100}{10n^2} = 1 + \frac{1}{5n} + \frac{10}{n^2}
 \]
 \[
 \downarrow \quad \downarrow
 \]
 \[
 0 \\ 0
 \]
 as $n \to \infty$
A ! B are same:
they can be equalized by running
B on a faster device.

Strategy for Algorithm Analysis:

- Choose some basic operation
 (barometer operation)
- Count # of executions of this
 op. in best, worst, avg. case.
- Determine this count as a function
 of input size.
- Determine asymptotic growth of
 this function.
Do this for insertion sort.

Basic op: Comparison of array elements.

Concentrate on worst case.

\[j = 2 \ : \ 1 \ \text{comparison} \]

\[j = 3 \ : \ 2 \ \text{comp}. \]

\[\vdots \]

\[i \ : \ j-1 \ \text{comp}. \]

\[\vdots \]

\[j = n \ : \ n-1 \ \text{comp} \]

\[T(n) = 1 + 2 + \ldots + (n-1) = \frac{n(n-1)}{2} \]

\[\therefore \ T(n) = \Theta(n^2) \]
Problem Example:
How to insert array indices into a list.

\[A = \begin{pmatrix} a & b & c & d \end{pmatrix} \]

Want: \[L = (1 \ 2 \ 0 \ 3) \]
Start: \[L = () \]

Insert 0: \[L = (0) \]

Insert 1: \[L = (0) \]
\[L = (1 \ 0) \]

Insert 2: \[L = (1 \ 0) \]
\[L = (1 \ 2 \ 0) \]

Insert 3: \[L = (1 \ 2 \ 0) \]
\[L = (1 \ 2 \ 0) \]
\[L = (1 \ 2 \ 0) \]
\[L = (1 \ 2 \ 0 \ 3) \]