- Lab closed
- Final exam: Wed. Dec. 17, 8-11 am

A BST is a BST.

Convention: nil children are considered to be leaves.

RBT Properties

1. Each node Red or Black.
2. Root is Black
3. Each leaf (i.e. nil) is Black.
4. Each Red node has 2 Black children
5.) for any node x, every descending path from x to a leaf has same # of black nodes.

Define **the black height** $bh(x)$, of x is the # of black nodes in a tree. Path from x to a leaf (not counting x itself), well defined by **BST** #5.
<table>
<thead>
<tr>
<th>nodes</th>
<th>bluee height</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>5, 11, 3</td>
<td>2</td>
</tr>
<tr>
<td>1, 2, 4, 6, 7, 9, 10, 12</td>
<td>1</td>
</tr>
<tr>
<td>all leaves (niles)</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: \(bh(x) = 0 \) if \(\text{height}(x) \) = 0.

1. \(x \) is a leaf.
Theorem

A RBT with \(n \) internal (non-nil) nodes and height \(h \) satisfies

\[
h \leq 2 \log (n+1)
\]

Proof

Any binary tree satisfies \(h \geq \lceil \log n \rceil \), so a RBT \(T \) satisfies

\[
\Omega(\log n) \leq \text{height}(T) \leq O(\log n)
\]

so \(\text{height}(T) = \Theta(\log n) \).

Thus all BST algorithms run in time \(\Theta(\text{height}(T)) = \Theta(\log n) \).
A Binary Tree satisfying

\[\text{height}(T) = \Omega(\log n) \]

is often called a balanced tree.

- Insert, Delete, Search for

 BSTs do not preserve RB-T

 properties. However, they can
 be altered so as to preserve
 RB-T properties, and to run in
 time \(\Theta(\text{height}(T)) = \Theta(\log n) \).
If x is any node in a RB tree, then the subtree rooted at x contains at least \(\frac{bh(x)}{2} - 1 \) internal nodes.

Notation

\[N(x) = \# \text{ of internal nodes in the subtree rooted at } x \]

Lemma says:

\[N(x) \geq 2^{\frac{bh(x)}{2}} - 1 \]
\textbf{Proof.} (Induction on } \text{height}(x)\).

If } \text{height}(x) = 0\), then } x \text{ is a leaf, and } \text{bh}(x) = 0\), so

\[2^{\text{bh}(x)} - 1 = 2^0 - 1 = 1 - 1 = 0 \]

since } x \text{ is a leaf, } N(x) = 0\), so
inequality is } 0 \geq 0\), which is true.

Let } \text{height}(x) > 0\) and assume for any node } y \text{ with } \text{height}(y) < \text{height}(x)\) that

\[N(y) \geq 2^{\text{bh}(y)} - 1 \]

we must show:

\[N(x) \geq 2^{\text{bh}(x)} - 1 \]
Since $\text{height}(x) > 0$, x is an internal node, and necessarily has 2 children (one or both may be null).

1. If $\text{color}(x) = \text{Red}$, then
 \[bh(\text{left}(x)) = bh(x) \]

2. If $\text{color}(x) = \text{Black}$, then
 \[bh(\text{left}(x)) = bh(x) - 1 \]

In any case we have

\(\bigcirc \) \hspace{1cm} bh(\text{left}(x)) \geq bh(x) - 1

Since $\text{height}(\text{left}(x)) < \text{height}(x)$, the (strong) ind. hyp. gives
\[N(\text{left} \times 1) \geq 2 \quad \text{by ind. hy.} \quad \text{by } \circ \]

a similar argument for right \times 1

gives

\[N(\text{right} \times 1) \geq 2 \quad \text{by ind. hy.} \quad \text{by } \circ \]

\[\text{analogous inequality to } \ast \]

\[N(x) = N(\text{left} \times 1) + N(\text{right} \times 1) + 1 \]

\[\geq (2 \cdot bh(x) - 1) + (2 \cdot bh(x) - 1) + x \]

\[= 2 \cdot 2 \cdot bh(x) - 1 \]

\[= 2 \cdot bh(x) - 1 \]
Proof of Theorem:

Let T be a $2B$-tree with n internal (key-bearing) nodes, let $h = \text{height}(T) = \text{height}(\text{root}(T))$.

By $2B$-Tree 4, at least half the nodes in any desc. path from root to leaf must be black (otherwise would have 2 reds in a row.) Thus

$$bh(\text{root}(T)) \geq \frac{h}{2}$$
By previous lemma:

\[n = N\left(\text{root}[T]\right) \geq 2^{\left\lfloor \frac{h}{2} \right\rfloor} - 1 \geq 2^{-1} \]

\[n \geq 2^{-1} \]

\[2^{-1} \leq n \]

\[2^{-1} \leq n+1 \]

\[\frac{h}{2} \leq \log(n+1) \]

\[h \leq 2 \log(n+1) \]

\[\therefore \]
13.2 Rotation

\[
\text{RightRotate}(T, y)
\]

\[
\text{LeftRotate}(T, x)
\]