Antibiotics and Resistance

TOPICS
1. Antibiotics and clinical microbiology
2. Types of antibiotics
3. Mechanisms of action
4. Test for antibiotic sensitivity
5. Antibiotic resistance
6. Solutions

Figure References:

Chemotherapeutic agents

- Chemical agents used to treat disease
- Destroy pathogenic microbes or inhibit their growth within host
- Most are antibiotics
 - microbial products or their derivatives that kill susceptible microbes or inhibit their growth
- Distinct from antimicrobial agents
 - Not intended for therapeutic purposes
 - Naturally occurring and/or synthetic
 - Used to sterilize or inhibit microbial growth

Before “modern” antibiotics metals solutions were used.

- Arsenic
 - Used since antiquity
 - was one of the first antimicrobial compounds and was effective against syphilis.
 - Arsenic is very toxic to the patient however.
- Mercury
 - Very effective antimicrobial agent.
 - Used to sterilize surfaces and kill microbes
 - Still used as preservative in vaccines
- Bacteria can develop really high levels of resistance to metals (5-10 mM!).
General effects of Ab on bacteria

- Interferes with protein/DNA synthesis
- Disruption of cell wall and/or membranes

The Development of Chemotherapy

- Paul Ehrlich (1904)
 - Developed concept of selective toxicity
 - Identified dyes that effectively treated African sleeping sickness
 - One of the first is salvarsan (arsenic containing drug)

- Alexander Fleming accidentally discovered penicillin (1928)
 - Observed penicillin activity on contaminated plate

- Selman Waksman discovered streptomycin (1944)

General Characteristics of Antimicrobial Drugs

- Selective toxicity
 - Ability of drug to kill or inhibit pathogen while damaging host as little as possible

- Therapeutic dose
 - Drug level required for clinical treatment

- Toxic dose
 - Drug level at which drug becomes too toxic for patient (i.e., produces side effects)

- Therapeutic index
 - Ratio of toxic dose to therapeutic dose
Mechanism of Action of Antimicrobial Agents

- Can impact pathogen by targeting some function necessary for its reproduction or survival
- Targeted function is very specific to pathogen → higher therapeutic index

Summary of the effect of antibiotics on cell functions

Different types of antibiotics (Ab)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Producer</th>
<th>Mode of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell wall synthesis inhibitor</td>
<td>Pencillium</td>
<td>Blocks transpeptidation in peptidoglycan synthesis</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Semi-synthetic</td>
<td>Blocks transpeptidation in peptidoglycan synthesis</td>
</tr>
<tr>
<td>Bacitracin</td>
<td>Bacillus subtilis</td>
<td>Inhibits isopenyl pyrophosphate dephosphhydration</td>
</tr>
<tr>
<td>Disruption of membrane potential</td>
<td>Bacillus brevis</td>
<td>Ionophore disrupts cell membrane integrity and function</td>
</tr>
<tr>
<td>Tyrocidine</td>
<td>B. polymyxa</td>
<td>Disrupts membrane transport and function</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Streptomyces rimosus</td>
<td>Potassium-specific transportor</td>
</tr>
<tr>
<td>DNA and RNA synthesis inhibitor</td>
<td>S. spheroides</td>
<td>Binds to a subunit of DNA gyrase and inhibits action</td>
</tr>
</tbody>
</table>

Different types of antibiotics (Ab)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Producer</th>
<th>Mode of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic inhibitor</td>
<td>Synthetic</td>
<td>Dihydrofolate reductase inhibitor</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Synthetic</td>
<td>Dihydrofolate reductase inhibitor</td>
</tr>
<tr>
<td>Dapsone</td>
<td>Synthetic</td>
<td>Inhibits dihydrofolate synthetase inhibitor</td>
</tr>
<tr>
<td>Sulfaazimide</td>
<td>Synthetic</td>
<td></td>
</tr>
<tr>
<td>Protein synthesis inhibitor</td>
<td>S. aureus</td>
<td>Blocks transcribing enzyme RNA polymerase</td>
</tr>
<tr>
<td>Rifampin</td>
<td>S. aureus</td>
<td>Blocks 50S ribosomal subunit and stops peptidyltransferase</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>S. erythraeus</td>
<td>Inhibits 30S ribosomes, blocks amino acid incorporation into peptide</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>S. griseus</td>
<td>Inhibits binding of aminoacyl tRNA to ribosomes</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>S. aureus</td>
<td>Blocks ribosomes blocking peptidyltransferase</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>S. liquefaciens</td>
<td>Binds to the 30S subunit to inhibit translocation</td>
</tr>
</tbody>
</table>

Microbial Life 2e, Table 7.5 (Part 1)
Broad vs. Narrow Spectrum

Broad spectrum: affects many different types of bacteria
Narrow spectrum: specific to one particular group of bacteria

How do we determine the level of antimicrobial activity?

- Effectiveness expressed in two ways
 - Minimal inhibitory concentration (MIC)
 - lowest concentration of drug that inhibits growth of pathogen
 - Minimal lethal concentration (MLC)
 - lowest concentration of drug that kills pathogen

- Two techniques are routinely used to determine MIC and MLC

1. Dilution Susceptibility Tests

- Inoculate media containing different concentrations of drug.
- Monitor growth by plate counts or OD 600 nm.
- Plot the OD 600 nm vs. concentration
- The lowest concentration showing no growth is MIC
- The MLC:
 - if broth used, tubes showing no growth can be subcultured into drug-free medium
 - broth from which microbe can’t be recovered is MLC

II. Kirby-Bauer Disk Diffusion Tests

- Disks impregnated with specific drugs are placed on agar plates inoculated with test microbe
- Drug diffuses from disk into agar, establishing concentration gradient
- Observe clear zones (no growth) around disks
Kirby-Bauer Disc Diffusion Results

Zone of inhibition (diameter) used to determine susceptibility or resistance

TABLE 30.13 Diameter of the zone of inhibition as a measure of susceptibility to selected antibacterial agents

<table>
<thead>
<tr>
<th>Antibacterial</th>
<th>Amount on Disk (μg)</th>
<th>Zone Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resistant</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>10</td>
<td>28 or less</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>15</td>
<td>13 or less</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>10</td>
<td>12 or less</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>30</td>
<td>14 or less</td>
</tr>
</tbody>
</table>

What factors influence the effectiveness of antimicrobial drugs during treatment?

- Ability of drug to reach site of infection
- Susceptibility of pathogen to drug
- Ability of drug to reach concentrations in body that exceed MIC of pathogen

Factors influencing the MIC in the body during treatment

- Amount administered
- Route of administration
- Pharmacokinetics
 - The fate of a substance in the body:
 - Rate of uptake
 - Rate of clearance (elimination) from body
Microbial drug resistance

- Using antibiotics inevitably selects for resistance.
- This is a good thing for microbe.
- This is a big problem for public health.
- Once resistance originates in a population it can be transmitted to other bacteria

Post-therapeutic effects of antibiotic dispersion

Home, daycare, hospital, farm

The individual is an incubator for growing and spreading resistant bacteria

- a) Individual taking antibiotics is a focal point for high concentration of Ab (red) and resistant bacteria (black dots).
- b) Over time, resistance bacteria spread and antibiotics goes into the environment via waste water and disposal
- c) If other people are treated this can lead to higher density of resistant microbes within the environment
- d) Selective process continues during and after therapy.

Appearance of drug-resistant bacteria

Antibiotic Resistance
Antibiotic resistance

Natural

- Lack the structural target for an antibiotic
 - Eg. Mycoplasma & Archaea are resistant to penicillin because they lack peptidoglycan
- Antibiotic does not reach target
 - E.g outer membrane of Gram- is impermeable to Penicillin G

Acquired... from antibiotic resistance genes

Table 15.1 Common mechanisms of plasmid-encoded antibiotic resistance

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Mechanism of Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td>Synthesis of β-lactamases, enzymes that hydrolytically destroy the antibiotic.</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Synthesis of an enzyme that acylates chloramphenicol, rendering it inactive.</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Synthesis of one of several enzymes that inactivate the antibiotic by acetylation, phosphorylation, or adenylation.</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Synthesis of a membrane protein capable of pumping the antibiotic out of the cell before it can act on the ribosomes.</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Synthesis of an enzyme that methylates bacterial 23S ribosomal RNA; methylated ribosomes cannot bind the antibiotic.</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Synthesis of a mutant, trimethoprim—insensitive form of dihydrofolate reductase.</td>
</tr>
</tbody>
</table>

Antibiotic Resistance Genes

- Degradate antibiotic
 - Penicillinase
- Alter antibiotic
 - Acetylation
- Pump out antibiotic
 - Tetracycline
- Mutate target gene
 - Transpeptidation enzyme

Origin and spread of resistance genes

- Resistance genes can be chromosomal or on plasmids
 - Can exist separate from chromosome or integrated into it
- Chromosomal genes
 - Mutations can arise
 - If mutation rate is of 1 in 10^7,
 - In 10^{10} cells you might have 1000 mutations
 - Mutations might occur in genes encoding proteins targeted by drug
- R plasmids
 - Resistance plasmids
 - Can be transferred to other cells by conjugation, transduction, and transformation
 - Can carry multiple resistance genes
- Gene cassettes
 - Sets of resistance genes
 - Can exist as separate genetic elements
 - Can be part of transposon, integron or chromosome
Alter the antibiotic

Aminoglycoside
Kanamycin

![Diagram showing alteration of antibiotic action on ribosome](image)

Pump out the antibiotic

Example: Tetracycline and Chloramphenicol resistance
Microbe pumps Tc of Cm out of the cell
(Multi-Drug-Resistant Transporters)

![Diagram showing pumpout of antibiotic](image)

Example: cell wall targets

review peptidoglycan biosynthesis

Transglycosylation Transpeptidation

Gram positive like *Streptococcus*

Penicillin

- Inactivates transpeptidase enzyme, which is also called a peptidoglycan binding protein (PBP)
- Does not target transglycosylation

Penicillin resistance

- Acquire a penicillinase, also called a beta lactamase. These cleave the Beta lactam ring
 - or
- Mutate the PBP
- Acquire an alternative PBP
Vancomycin: drug of last resort

- For penicillin, resistance started appearing after ~2 years of its discovery
 - This is a typical time for a resistance mechanism involving one gene.
- Vancomycin are very effective against Gram +.
- However, Vancomycin Resistant Enterococci (VRE) were appearing in hospitals in 1987, 29 years after clinical introduction of Vancomycin.
 - Vancomycin resistance requires five genes
 - Need more time to acquire the necessary mutations
- The genes are on now on plasmids and transposons.
 - These rapidly spread among Enterococci.
- There is little defense against MRSA if it gets these vancomycin resistance genes.

Vancomycin

- Ties up the peptide substrate for the PBP.
- Inhibits transpeptidation and transglycosylation reactions

Vancomycin resistance

- Reprogram the terminal peptide
 - D-Ala-D-Ala to D-Ala-D-Lac
- The new pentapeptide still works with the PBP
- Vanco binds with 1000X less affinity to D-Ala-D-Lac

The search for new antibiotics...

- How do scientists find antibiotics?
- Once you find them how can they be put to use?

 Possible answer:
 Nature is the best chemical engineer.

 Screen for antibiotic producing microbes.
Actinomycete was streaked and incubated for several days.

Then, four species of bacteria were streaked:

- Bacillus megaterium
- Micrococcus luteus
- Staphylococcus aureus
- E. coli

What do you do once you find an Ab producing microbe?

- Work with natural products chemist to purify and analyze the antimicrobial agent.
 - Structure/function tests
 - Maybe modify the chemical structure to decrease toxicity in humans
- If the new antibiotic is biologically active *in vivo*:
 - The industrial microbiologist may genetically modify the Ab producing strain to increase yields to levels acceptable for commercial development.
Streptomyces

- The Spartans of Chemical Warfare
- Gram+, filamentous soil bacteria
- Produce spore-forming mycelia
- Almost 50% of all isolated strains produce antibiotics
- Production is coupled to sporulation
- Streptomyces also produce compounds that are active against tumors, fungi, and parasites.
- Many of the metabolites are pigmented
- 1000’s have been reported
 http://genomebiology.com/2002/3/7/REVIEWS/1020/

Antibiotic (Ab) production by Streptomyces species

- Production of Ab is due to secondary metabolic islands (SMILES)
 - Big gene cluster
 - S. coelicolor has 20 SMILES
- Antibiotic producing strain is resistant to its own Abs.
 - Uses a variety of mechanisms to be resistant, mainly efflux pumps

Preventing emergence of drug resistance

- Give drug in high concentrations
- Give two or more drugs at same time
- Use drugs only when necessary
- Possible future solutions
 - continued development of new drugs
 - use of bacteriophages to treat bacterial disease
Augmentin
- Two drugs
- Clavulanate: inactivates beta lactamases
- Amoxicillin: inhibits transpeptidation enzyme (PBP)

Screen Against VRE
- Make chemical library of vancomycin
- Screen for hits against VRE
- Biphenyl alkyl substitution on the vancosamine sugar increases potency against VRE 2 fold!

Summary
- Antibiotics molecules produced by microbes can inhibit growth of a different species
- Antibiotics function by inhibiting processes that are unique to prokaryotes:
 - cell wall synthesis (Penicillin)
 - translation (Chloramphenicol)
 - transcription (Rifampicin)
- Antibiotic resistance is a big problem and can be mediated by:
 - exclusion of drug
 - drug can’t bind to or penetrate pathogen
 - pump drug out
 - inactivation of drug
 - chemical modification of drug by pathogen
 - alteration of target enzyme
 - use of alternative pathways or increased production of target metabolite

Arsenic resistance conferred by genes on plasmids and/or chromosome

- AsO_4^{3-} or AsO_2^-
- AsO_2^- or AsO_4^{3-}
- Arsenic pump
- Arsenic resistance conferred by genes on plasmids and/or chromosome
- peri.
- CM
- cyto.
- Arsenic
- ADP + Pi
- ATP
- ArsB
- ArsA
- ArsC
- ArsRDABC mRNA
- arsR
- arsD
- arsB
- arsC