Microbiology of Wastewater Treatment

Lecture 25

Other Sources:
http://www.splammo.net/JLbactsite.html
Black, Microbiology Principles and Exploration 7th Ed
Madigan, Brock Biology of Microorganisms, 11th Ed.

What is wastewater?
✓ Industrial sources:
 - Petrochemical, dairy, food, pharmaceutical, metallurgical, etc.
✓ Domestic sources:
 - Form households and non-industrial businesses
✓ Domestic sewage:
 - Sinks, toilets, and showers
 - US domestic sewage varies little from community to community across the country
 - Our waste is not unique. We even flush our toilets at the same time.

What’s in domestic wastewater?
✓ Also called sewage: it looks like spent dishwater
✓ The chemists only care about the organic content, specifically carbohydrates, fats, and proteins.
✓ Sewage is 99.9% water and 0.02-0.04% solids
✓ Example: Washington DC, 200 tons of solids per day is produced
 - 40-50% is proteins, 40-50% carbohydrates, 5-10% fats
✓ What would happen if this was released into the surrounding environment?

Lecture Topics
✓ Why treat wastewater
✓ The wastewater treatment plant
✓ Important microbial processes
✓ Microbial monitoring

http://nsm1.nsm.iup.edu/simmons
Environmental consequences of not treating sewage:

- People can get sick from pathogen contaminated water. Big problem in developing nations.
- Releasing wastewater directly into a stream leads to oxygen depletion.
 - This is caused by aerobic respiration linked to high organic carbon loads in the waste.
 - Low oxygen in water can cause fish kills.
- The degree of oxygen consumption in wastewater can be quantified.
 - This is called the Biological Oxygen Demand (BOD)

http://ian.umces.edu

How to measure BOD

- Five day bioassay for oxygen consumption, BOD5
- 300 ml bioassay in special bottles.
- Uses an oxygen meter to measure dissolved oxygen (DO) consumption in a five day period
- The BOD5 is calculated by:
 \[\text{BOD}_5 \text{ (mg/L)} = \frac{D_1 - D_2}{P} \]
 - \(D_1 \): initial DO (mg/L) of the sample
 - \(D_2 \): sample DO (mg/L) after 5 days
 - \(P \): decimal volumetric fraction of sample used.

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic sewage</td>
<td>150-200 mg/L</td>
</tr>
<tr>
<td>Milk processing/cannery waste</td>
<td>5000-6000</td>
</tr>
<tr>
<td>Pulping operations</td>
<td>10,000-15,000 mg/L</td>
</tr>
</tbody>
</table>

Why the different numbers?

The need for wastewater treatment plants

- Goal of wastewater treatment:
 - Protect health
 - Preserve natural resources
 - Prevent ecological damage

- How to accomplish these goals:
 - Use wastewater treatment plants (WWTP)
 - The WWTP removes energy-rich organic matter before discharge into the environment.
 - And uses technology to prevent/lower the occurrence of water borne diseases.
Sewage Treatment

Primary treatment:
- Non-biological treatment
- Removes solids
- Waste has high nutrient load (e.g., C, N, S, and P)

Secondary treatment:
- Decreases dissolved organic carbon (DOC)
- Uses biological treatment
- Aerobic and anaerobic secondary treatment

Microbiology of anoxic secondary treatment

- This is used for breaking down solid waste.
- Done in an anoxic sludge digester.
- Solids are complex polymers e.g., cellulose and fiber.
 - Microbes secret lipases, proteases, amylases, etc.
- Fermentation is the major metabolism in this treatment
- Lots of methane is produced by methanogenic archaea.
- The methane is collected and used to generate electricity.
Aerobic secondary waste treatment: trickle filter

- Trickling filter is a bed of crushed rocks—the 1st-treated sewage is trickled over it. Lots of surfaces for microorganisms to attach to.
- Complete mineralization of waste to CO$_2$, ammonia, nitrate, sulfate, and phosphate.
- Same process occurring in a fish aquarium.

Aerobic Activated sludge

- Air bubbled through waste water.
- Bacteria form large flocs.
 - Zoogloea ramigera is one of the key species that forms a slime and is the base of the floc.
- After the flocs form they are allowed to settle out.
- Filamentous bacteria can cause sludge bulking problems—sludge thickens.

Important microbes in the sewage treatment plant

- Nitrifying bacteria
 - Aerobes
 - Convert nitrogenous waste into nitrate.
- Denitrifying bacteria
 - Anaerobes
 - Convert nitrate to N$_2$.
- Methanogens
 - Generate methane from acetate.
 - Or use H$_2$ and CO$_2$ to make methane.
 - Mostly archaea.
Nitrifying bacteria

- Ammonia is converted into nitrate
- Ammonia has a high BOD because NH$_3$ oxidation requires oxygen.
- Two groups of microbes are involved:
 - Ammonia oxidizing bacteria (AOB)
 - Nitrite oxidizing bacteria (NOB)
- AOB oxidize NH$_3$ to NO$_2^-$ in two steps:
 - Ammonia monoxygenase (AMO)
 - Hydroxylamine oxidoreductase (HAO)
- NOB oxidize NO$_2^-$ to NO$_3^-$
 - Uses the Nor enzyme complex
- Both AOB and NOB respire oxygen

Nitrification Enzymes

- AMO = converts ammonia to hydroxylamine (toxic)
- HOA = converts toxic hydroxylamine to nitrite
- NOR = nitrite oxidoreductase

Ammonia Oxidizing Bacteria (AOB):
- (A, B) Nitrosomonas
- (C, D) Nitrosolobus

Nitrite Oxidizing Bacteria (NOB):
- (E, F) Nitrospira
- (G, H) Nitrococcus
Sewage treatment and environmental monitoring

- Monitoring effluents and the surrounding environment is important (Why?):
 - Asses the efficacy of the treatment process
 - C, N, P, metals, microbes, effluent toxicity
- It is often too difficult to directly monitor a specific pathogen or virus/phage (Why?).
- Instead, monitoring is usually done for indicator organisms.

What is an indicator organism?

- An organism that can be readily cultured that indicates the presence of a pathogenic microorganism or correlates to a health problem.
- Five criteria for an indicator organism:
 - Consistently present in feces and at higher concentrations than pathogens.
 - Should not multiply outside the human intestinal tract.
 - Should be as resistant or more resistant than the pathogen to environmental conditions and to disinfection.
 - Easy to assay (culture and quantify) and differentiate from other organisms.
 - Environmental concentrations should correlate with pathogens or measurable health hazards.

Common indicator bacteria

- **Coliforms:**
 - Facultatively aerobic, gram-negative, nonspore-forming, rod-shaped bacteria; ferment lactose with gas formation at 35°C within 48 hrs.
 - Usually enteric bacterial group (E. coli, Klebsiella, Citrobacter, Enterobacter, Serratia, Yersinia)
 - Poor indicator: often found outside of the intestinal tract
- **Fecal coliforms**
 - Thermotolerant coliforms (44.5°C), 20% of total coliforms.

Monitoring indicators is done using culturing techniques and selective media.

<table>
<thead>
<tr>
<th>Test medium type</th>
<th>Ideal incubation temperature (°C)</th>
<th>Typical colony color, size, and morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total coliforms (TPC)</td>
<td>35 or 45</td>
<td>Colonies are round, raised, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Total coliforms (NC)</td>
<td>35 or 45</td>
<td>Colonies are non-lactose-fermenting, round, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Escherichia coli (E. coli)</td>
<td>35 or 45</td>
<td>Colonies are non-lactose-fermenting, round, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Escherichia coli (H+I)</td>
<td>35 or 45</td>
<td>Colonies are non-lactose-fermenting, round, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Escherichia coli (MD)</td>
<td>35 or 45</td>
<td>Colonies are non-lactose-fermenting, round, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Fecal coliforms (FC)</td>
<td>35 or 45</td>
<td>Colonies are round, raised, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Fecal streptococci (FS)</td>
<td>35 or 45</td>
<td>Colonies are round, raised, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Staphylococcus (SAL)</td>
<td>35 or 45</td>
<td>Colonies are round, raised, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Salmonella (SAL)</td>
<td>35 or 45</td>
<td>Colonies are round, raised, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
<tr>
<td>Clostridium (PCR)</td>
<td>35 or 45</td>
<td>Colonies are round, raised, and smooth; 1 to 4 mm in diameter, and not with a golden-green metallic sheen.</td>
</tr>
</tbody>
</table>
Most probable number (MPN) analysis for quantifying coliforms

- Quantifies total coliform bacteria in water samples by three sub-tests
 - Presumptive, Confirmed, and Completed
- The MPN is used to monitor waste effluents, drinking water systems, and recreational waters.
- High MPN results can lead to beach closures.
- In a drinking water system, a positive for coliform is a HUGE deal. This would set off a series of events to find the source of coliform contamination.
 - Would you want to be drinking water with coliforms in it?

MPN: Presumptive Test

- Determines presence of coliforms (gas producers).
- Serial dilution of replicate lactose broth tubes

Growth:
- Yes
- No

Fermentation:
- Yes
- Gas
- No

<table>
<thead>
<tr>
<th>Volume of Dilution Added</th>
<th>Culture Results</th>
<th>Number of Positive Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ml</td>
<td>+ + + + +</td>
<td>5</td>
</tr>
<tr>
<td>1 ml</td>
<td>+ + +</td>
<td>2</td>
</tr>
<tr>
<td>0.1 ml</td>
<td>+ + + + +</td>
<td>0</td>
</tr>
</tbody>
</table>

Water sample inoculation volume

- 10 ml/tube
- 1 ml/tube
- 1:10 Dilution: 1 ml/tube
- 1:100 Dilution: 1 ml/tube

Replicate tubes

- Dilution: 10^3, 10^4, 10^5
- Gas-positive tubes: 5, 5, 3, 1
- MPN Index (bacterial cells/100 ml):
 - 10^3: 5
 - 10^4: 5
 - 10^5: 3

Lauryle tryptose (controls lactose broth)

Analysis: Gas-positive tubes after 24 to 48 hours of incubation give an MPN index. In this example, there are 1,100 coliform bacteria per 100 ml of the water sample.

MPN index reports data as per 100 ml
MPN: Confirmed Test

- Part two of the MPN test
- Positive tubes in the presumptive test are inoculated into brilliant green lactose bile broth (BGLB)
 - These tubes will confirm acid and gas production (fermentation end products).
 - Bile will inhibit gram positive organisms

Example MPN problem:
Glucose fermenters in lake water:

<table>
<thead>
<tr>
<th>Dilution of lake water:</th>
<th>1st dilution (10^-1)</th>
<th>2nd dilution (10^-2)</th>
<th>3rd dilution (10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount inoculated into each of three tubes of glucose fermentation broth</td>
<td>1 ml</td>
<td>0.1 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>Set of tubes (designations used below)</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td># of tubes showing growth</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td># of tubes showing acid production</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- Choose numbers with three consecutive sets of "dilution to extinction" for sugar fermenting organisms (tubes: C, D, E)
- The MPN table for 3-1-0 is 0.43 organisms (next slide).
- 0.43 organisms were inoculated into the middle tube (D).
- Use the dilution to calculate the MPN per ml
- Tube D had 0.1 ml of a 10^-3 dilution of lake water.
- Now calculate the MPN in the original sample:
 0.43 organisms X 10^3 = 0.1 ml = 4.3 x 10^3 glucose fermenters per ml
 The MPN index would be 4.3 x 10^3 per ml = 100 x 43 organisms per 100 ml

MPN: Completed Test

- Positive tubes from the confirmed test are analyzed by streak plating on eosin methylene blue (EMB) plates.
 - Incubated at 35°C for 24-48 hr
 - Only coliforms will turn dark with a metallic green sheen
 - Gram + inhibited by eosin/MB
- Coliform colonies are gram stained and to verify that they are gram negative and non-spore forming (see definition of coliforms).
Molecular techniques for monitoring indicators

✓ Molecular methods can be very sensitive.
 - In theory, one gene copy can be detected via PCR.
✓ Molecular methods can be rapid: <1 day for results.
✓ Instead of growing organisms the goal is to track the genetic signature of pathogens in environmental samples.
✓ DNA is extracted from a sample and PCR is usually done to detect some genetic marker that is only present in a particular pathogen or virus.
✓ What gene target would you go after?

Example: detecting toxic E. coli by PCR

✓ Shiga toxigenic Escherichia coli (STEC) cause deadly gastrointestinal disease in humans: e.g. O157 types.
✓ Here are some detectable virulence factors:
 - The hlyA gene for Enterohemolysin E. coli (EHEC)
 - The eaeA gene for intimin, encodes attaching and effacing (A/E) protein
 - The stx1 and stx2 genes, Shiga type 1 and 2 toxins; type 1 is more deadly
✓ Use multiplex PCR, which allows detection of multiple genes in one PCR.

Lecture summary

✓ Because of their diverse capabilities to degrade organic material, microorganisms are exploited for the treatment of wastewater (sewage).
✓ Secondary wastewater treatment relies on the power of microorganisms to breakdown solid waste into smaller molecules that other microbes can convert into nutrients.
✓ Nutrients are further converted either by nitrifying bacteria into nitrate and then denitrifiers convert the nitrate to N₂ gas.
✓ Small organic acids are eventually converted into methane gas by methanogenic archaea.
✓ The effluent released into the environment should have a low BOD and low numbers of pathogens.
✓ Monitoring is done to quantify indicators of pathogens and BOD to make sure the environment is safe for humans and wildlife.